

### **SDA Users Meeting: General Forum**

18 March 2013

# Early Afternoon Agenda: SDA General Forum (13:30-16:00)



- Introduction and SDA Overview
- SDC and the SDC Plugin
- How Can You Benefit?
  - <u>Conjunction assessment</u>
  - Launch and Early Orbit Phase
  - Automated CSSI data source comparisons
  - <u>Cases of interest: DA14 and BLITS</u>
  - <u>EMI/RFI mitigation support (Smith/Rawlins)</u>
- SDA Future Plans
- General Q & A



#### **SDA Users Meeting: SDA General Forum**

### **INTRODUCTION AND SDA OVERVIEW** RON BUSCH

Approved for public release

### What is the Space Data Association?



- The Space Data Association (SDA) is a not-for-profit association formed by and for satellite operators to provide reliable and efficient data-sharing critical to the safety and integrity of the space environment and the RF spectrum.
- The SDA was founded by Inmarsat, Intelsat and SES

   three of the leading global satellite communications
   companies. These three companies, plus Eutelsat, now
   form the Executive Board of the SDA.

#### "Safety of Flight"

Definition: The condition where satellites are positioned and operated in a manner that preserves their long-term operational viability and the preservation of the orbital regime(s) involved

### **SDA Charter**



 Seek and facilitate improvements in the safety and integrity of satellite operations through wider and improved coordination between satellite operators

 Seek and facilitate improved management of the shared resources of the Space Environment and the RF Spectrum



### Why was the SDA created?

#### Enhance "Safety of flight"

Maintain the long-term viability of satellites and their orbit regimes

#### To improve the accuracy of collision avoidance predictions

- Expand satellite operator participation
- Adopt best practices across industry
- Provide necessary framework for full operations (legal, technical)
- Address ops. issues with current cross-industry conjunction coord.
  - Reduce false alarms, missed events
  - Minimize member time and resources devoted to CA

#### To take advantage of opportunities for other data sharing

- RFI mitigation, including data for RFI geolocation
- Company contacts
- General operations data sharing

**Conclusion: SDA Enhances its Members' Satellite Operations** 

#### **SDA Status**



- SDA established as a legal entity in the Isle of Man
  - Provides necessary legal framework for data protection and sharing
- Space Data Center (SDC) system built by Analytical Graphics, Inc. (AGI)
  - System has now achieved Full Operations Capability, providing Conjunction Assessment service to its members

#### Growing membership

- Currently fifteen satellite operators from Geosynchronous and five from LEO orbital regimes
- As of March 2013, CA processing of 227 GEO satellites (more than 57% of all GEO satellites) and 92 LEO/other orbit satellites

#### Multi-national, open to all space operators

# Space Data Center Current Participation

SPACE DATA

- 3 civil satellite operators
- 21 contributing operators
- 92 LEO satellites from 5 operators
- 227 GEO satellites from 15 operators





Approved for public release





# **SDA Missions**

#### Increases safety of flight

- Automatic Conjunction Assessment (CA)
- Reduces false alarms, missed events
- Minimize time and resources devoted to CA
- Includes planned maneuvers (unique capability)

#### Deals with the growing problem of RFI

- RFI Alerts to focused distribution
- RFI historical event search
- Generation of geolocation data sets
- Library of Reference Emitters

#### Enables more efficient operations for all

 Reliable contacts database for satellite operators – technical and operations personnel

Conclusion: SDA Enhances its Members' Satellite Operations

# SDA Supports Collaborative



- Dissemination of 'best practices'
  - SDA legal agreements enforce appropriate behaviour
  - Validation of participant's data and processes
- Enhanced Conjunction Analysis (CA)
  - Merging/processing SDA owner-operator data and other sources
- Enhanced EMI/RFI mitigation data sharing
  - Participant provided data immediately available
- Support RFI initiative of other industry bodies (sIRG, EUI)

# Data Use Control / Legal



# How does SDA obtain & protect member data?

- Legal agreements between subscribers and SDA
  - Permitted Uses for SDC data/products
  - Prohibited Uses for SDC data/products
  - Retransmission to third parties prohibited
  - Obligations for member data contribution
  - Legal liability issues are addressed by enforceable contract
    - Isle of Man law allows the members to enforce the terms of the agreement directly against other members
- Multiple technical / security controls within SDC



# **Permitted & Prohibited Uses**

# SDC - Permitted Uses:

- Operational support, including Safety of Flight
- EMI/RFI resolution of actual harmful interference, including at ITU
- Support for insurance underwriting
- As legally required by national regulatory authorities

# SDC - Prohibited Uses:

- Any commercial purposes (sales, planning, marketing, etc.)
- Securing orbital-spectrum rights
- Transmittal to 3rd parties (except for Safety of Flight)
- Any other use that is not a Permitted Use



#### **SDA Users Meeting: SDA General Forum**

### **OVERVIEW OF SDC AND THE SDC PLUGIN** DAN OLTROGGE

Approved for public release



## **Space Data Center (SDC)**

The SDC is the processing system of the SDA

#### SDC – Three Key Mission Areas:

- Collision avoidance monitoring (Conjunction Assessment)/ Manuever Planning Validation / Flight Safety
- Radio Frequency Interference mitigation / Geolocation support
- Contact information (operations center) for SDA Member objects

#### SDC reliable and secure operation:

- Tertiary, geographically separated redundancy
- High level data security and encryption
- Best practice Information Assurance (IA) based on standards for high level computing systems

### **Current SDC Network Architecture**









The Space Data Center will provide regular information on pending conjunctions on orbit over the coming week. Because of the potentially catastrophic consequences of such conjunctions going unnoticed, it is hoped that this service will help satellite operators avoid undesired close approaches through advanced mission planning.

The current system time is Thu, 2012 Mar 08 14:23:16 UTC.

#### Dr. T.S. Kelso • SDC Operations Manager

- 🧧 sdc-support@agi.com
- SpaceDataCenter follow SpaceDataCenter on Twitter

Latest News

Approved for public release

# **SDC Demo: Conjunction Reports**



Conjunction Report Filter : - NO FILTER (all items displayed) --

01010011010

SPACE ASSO

#### **Conjunction Report 11802**

| ID                          | Satellites                                                                           | Radial (km)                                        | In-Track (km)                               | Cross-Track (km)                      | Meridian (km)                    |                   |  |  |
|-----------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------|-------------------|--|--|
| 289492                      | SL-12 R/B(2) (28139   2003-060D)                                                     | 0.1479                                             | -0.0225                                     | -0.0152                               | 0.1487                           | <u>E</u> <u>6</u> |  |  |
|                             | BLOCK DM-SL R/B (28138   2004-001B)                                                  | -0.1479                                            | 0.0225                                      | 0.0152                                | 0.1487                           | B 🚥               |  |  |
|                             | Start Date (UTC): 2012-0Time of Closest Approach (UTC): 2012-0End Date (UTC): 2012-0 | 13-08 14:00:00<br>13-09 17:55:58<br>13-15 14:00:00 | Max Probabil<br>Duration (se<br>Minimum Rar | lity : 0.000585<br>c) :<br>nge (km) : | 520691405325<br>604800<br>0.1504 | × *               |  |  |
|                             | SL-12 R/B(2) (28139   2003-060D)                                                     | -2.3287                                            | -6.2592                                     | -3.0637                               | 3.8482                           | B (13)            |  |  |
| 289532                      | INTELSAT 10 (26766   2001-019A)                                                      | 2.3275                                             | 6.2586                                      | 3.0657                                | 3.8492                           | <u>a</u> 📖        |  |  |
|                             | Start Date (UTC): 2012-0Time of Closest Approach (UTC): 2012-0End Date (UTC): 2012-0 | )3-08 14:00:00<br>)3-08 18:39:13<br>)3-15 14:00:00 | Max Probabi<br>Duration (se<br>Minimum Rar  | lity : 2.453137<br>c) :<br>nge (km) : | 92148987E-07<br>604800<br>7.3476 | * 8               |  |  |
|                             | BLOCK DM-SL R/B (28138   2004-001B)                                                  | -2.3841                                            | -6.5505                                     | -2.8461                               | 3.7128                           | <u>e</u> 13       |  |  |
|                             | INTELSAT 10 (26766   2001-019A)                                                      | 2.3829                                             | 6.5499                                      | 2.8486                                | 3.7138                           | <u>)</u> 📖        |  |  |
| 289542                      | Start Date (UTC) : 2012-0                                                            | 03-08 14:00:00                                     | Max Probabi                                 | lity : 2.336005                       | 46324756E-07                     |                   |  |  |
| Approved for public release |                                                                                      |                                                    |                                             |                                       |                                  |                   |  |  |

### **SDC Demo: RFI Alerts**



#### Add New RFI Event

Items marked with a dot (•) are required.

| Start Of Interference (UTC)• | 2012-03-08 14:39:02 |
|------------------------------|---------------------|
| End Of Interference (UTC)    |                     |
| State Of Interference•       | Active              |
| Uplink Polarization          |                     |
| Downlink Polarization        |                     |
| Sat U/L Beam Coverage•       | WH                  |
| Satellite Ocean Region•      | AOR                 |
| Region Of Interferer•        | North America       |
| Cause Of Interference        |                     |
| Is Sweeping Or Drifting•     | 🗇 Yes 🖲 No          |
| Is Intermittent•             | 🗇 Yes 💌 No          |
| Uplink Frequency (MHz)•      | 0                   |
| Downlink Frequency (MHz)•    | 0                   |
| Start Frequency (MHz)        |                     |
| Stop Frequency (MHz)         |                     |
| Transmitter                  |                     |
| Interfering Signal           |                     |
| Bandwidth (MHz)•             | 0                   |
| C/N (dB)                     |                     |
| Exact Location of Interferer |                     |



# SDC Demo: Satellite "Phone Book"

#### phone book » satellite contact

#### Satellite Contact Information

| Official Name    | SL-12 R/B(2) |
|------------------|--------------|
| SSC              | 28139        |
| Int'l Designator | 2003-060D    |
| ID               | 108132       |
| Owner            | SDACOM       |

#### Control Center Contacts

| Name       | E-mail          | Phone |
|------------|-----------------|-------|
| Jim Wilson | jwilson@agi.com |       |

#### **Conjunction Contacts**

| Name       | E-mail          | Phone |
|------------|-----------------|-------|
| Jim Wilson | jwilson@agi.com |       |

#### **RFI Contacts**

| Name       | E-mail          | Phone |
|------------|-----------------|-------|
| Jim Wilson | jwilson@agi.com |       |



### **Space Data Center Operations Statistics**

#### **SDC FOC Statistics To Date**

#### Ephemeris files uploaded:

- 248,827 operational
- 2012 training
- 26 maneuver
- CA runs executed: 6993
- CA satellite pairs processed: 18,132,248,388 (18 billion!)
- Conjunctions detected: 4,286,915
- TLEs in database: 24,906,602
- Satellites in database: 16,382 of which 325 are SDA participants and remainder are non-SDA active or debris



#### SDC fuses multi-source data multiple ways

- Each operator's data enables SSA for the others
- SDC created to facilitate fusion of mostauthoritative operator & tracking data available
  - On-the-fly data conversion and normalization
  - Automated (Web Services) or manual (UI) up/download
  - Most SDA operators upload data to SDC in fully automated manner via web services
  - SDC Plugin for STK to permit operators to easily fuse authorized data in single, customizable scenario



# Introducing the New SDC Plugin...

- AGI=creator of SDC and Systems Tool Kit (STK)
- SDC Plugin easily populates STK w/SDC data
- Under the hood: Full SDC security, web services
- Clean interface for straightforward operations



# **SDC Analysis Via The SDC Plugin**



- The SDC <u>AND</u> new SDC Plugin for STK enable SDA Flight Dynamists, RFI Analysts and support organizations to easily perform:
  - Reactive analyses
    - Flight Dynamics Staff (FDS): Post-collision breakup modeling, CA trending
    - RFI: CID, TDOA/FDOA geolocation, Rx Pwr Spectral Density geolocation)
  - Proactive/preemptive analyses
    - FDS: Collision avoidance, maneuver planning, satellite transits (fly-by!)
    - RFI: fly-bys, intelligent screening, pre-computed geolocation solution sets, coverage, transits)





# **SDC Login Access**

 SDC employs full 3-tier verification using a variety of credentials and secure access features to ensure users "belong"

SDC Plugin negotiates handshake w/SDC

| Login                   | ? <mark>×</mark>                   |                                |
|-------------------------|------------------------------------|--------------------------------|
| User:                   | doltrogge@agi.com                  |                                |
| Password:               |                                    |                                |
| Certificate Name:       | doltrogge@agi.com (Dan Oltrogge)   | eeu                            |
| Certificate Thumbprint: | 4E6E7849D60E682F0508A34F62616F2664 |                                |
| Server:                 | sdc.spacedatacenter.org            |                                |
|                         | Login                              | The ste                        |
|                         | Approved for put                   | /<br>lic release <sup>20</sup> |



Scenario time interval

automatically adjusted

to match SDC data

# **"Download My Fleet" Function**

 Provides immediate capability to populate STK with all of your latest ephemerides (and eventually, RF parameters and antenna pointing)

> The Time period for the data you selected does not fall in the Scenario Analysis Time period. Would you like to set the Scenario Analysis Period to your selected data? (Selecting No will continue the operation without changes.)

Planne Time Period Warning

STERAO =

19 Nov 2012 46:57:50.036

permit

operat

10 · W · II | @ |

000

25462\_2013-11-19 25516\_2012-11-19 25565\_2012-11-19 25565\_2012-11-19 26454\_2012-11-19 26454\_2012-11-19 26456\_2012-11-19 26554\_2012-11-19 26555\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26655\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-11-19 26555\_2012-1



Yes



No



ess feature will

te comp

ac

## **Conjunction Assessment**



# Full support to conjunction analysis

- Detection of collision risk
- Avoidance maneuver planning and optimization

|                                                                            | Import Conjunction                                                                                                                     |                            |             |                            | <b>— — X</b>                     |             |      |   |    |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|----------------------------|----------------------------------|-------------|------|---|----|
|                                                                            | Selected Conjunction Run                                                                                                               |                            | Conjunction | Filters                    |                                  |             |      |   |    |
|                                                                            | SDC Conjunction Job ID: 21486 Analysis Stat: 2012-11-12 22:00:00 000 Analysis Stat: 2012-21-12 22:00:00 000 Analysis Status: Completed |                            |             |                            |                                  |             |      |   |    |
|                                                                            | Select Conjunction F                                                                                                                   | Run                        |             | Configure Filt             | er Options                       |             |      |   |    |
|                                                                            | Conjunction Results                                                                                                                    |                            |             |                            |                                  |             |      |   |    |
| SDA Conjunction Run Selection                                              | Primary<br>(Common SSC<br>Name)                                                                                                        | Secondary<br>(Common Name) | SSC         | Conjunction Start<br>(UTC) | Conjunction Stop (UTC)           |             |      |   |    |
| Search Start (UTCG): 18 Nov 2012                                           | ASTRA 2C 26853                                                                                                                         | ASTRA 1L                   | 31306       | 2012-11-18 20:54:06.281    | 2012-11-19 02:34:09.141          |             |      |   |    |
| Search Stop (UTCG): 03 Dec 2012                                            |                                                                                                                                        | ? ×                        | 33436       | 2012-11-18 22:18:30.089    | 2012-11-19 03:46:28.177          | 0           |      |   |    |
| Schotz Ausilable Conjugation Dur                                           |                                                                                                                                        |                            | 33436       | 2012-11-19 09:52:52.026    | 2012-11-19 14:58:47.575          | l           |      |   |    |
| Select an Available Conjunction Run Analysis Start Time Analysis Stop Time |                                                                                                                                        |                            | 31306       | 2012-11-19 11:36:04.966    | 2012-11-19 15:54:44.516          | ີ ເ         | D    |   |    |
| Job ID (UTCG) (UTCG) Status                                                | )                                                                                                                                      |                            | 03029       | 2012-11-19 11:45:36.228    | 2012-11-19 11:49:31.163 🚽        | e e         |      |   |    |
| 33051 2012-11-19 10:00:00.000 2012-11-26 10:00:00.000 Waiting              |                                                                                                                                        |                            |             | Switch                     | Primany and Secondary Satellites | L .         | 1    |   |    |
| 33041 2012-11-19 08:00:00.000 2012-11-26 08:00:00.000 Completed            |                                                                                                                                        |                            |             | Switch                     | minary and Secondary Satelines   | b b         |      |   |    |
| 33021 2012-11-19 04:00:00.000 2012-11-26 04:00:00.000 Completed            |                                                                                                                                        |                            |             |                            |                                  | <del></del> |      |   |    |
| 33011 2012-11-19 02:00:00.000 2012-11-26 02:00:00.000 Completed            | I) Cross-Track Distance                                                                                                                | ce Limit (m)               |             |                            |                                  | Ē           |      |   |    |
| 33001 2012-11-19 00:00:00.000 2012-11-26 00:00:00.000 Completed            | Ephemeris Limit 50                                                                                                                     | 000                        |             |                            |                                  | ے: ا        | •    |   |    |
| 32991 2012-11-18 22:00:00.000 2012-11-25 22:00:00.000 Completed            | TLE Limit 50                                                                                                                           | 000                        |             |                            | Insert Cancel                    | 5           |      |   |    |
| 32981 2012-11-18 20:00:00.000 2012-11-25 20:00:00.000 Completed            |                                                                                                                                        |                            |             |                            |                                  |             |      |   |    |
| 32971 2012-11-18 18:00:00 000 2012-11-25 18:00:00 000 Completed            |                                                                                                                                        |                            |             |                            |                                  | 0           |      |   |    |
| OK Cancel                                                                  |                                                                                                                                        | ×                          | imum Ra     | ange                       |                                  | Q           |      |   |    |
|                                                                            | ОК                                                                                                                                     | Cancel                     |             |                            |                                  | 0,          |      |   |    |
|                                                                            |                                                                                                                                        |                            |             |                            | the fact little and and          |             | - A  |   |    |
|                                                                            |                                                                                                                                        |                            |             |                            |                                  | <b>/</b> 8  | ie 👫 | Q | ,  |
|                                                                            | Approved                                                                                                                               | for publ                   | lic rele    | ease                       |                                  |             |      |   | 28 |



# **Comparison W/External CA Sources**

# SDC Plugin rapidly compares/contrasts multi-source data

- Conjunction predictions (SDC and JSpOC CSM)
- Satellite positions:
  - Operator ephemerides
  - CSM vectors
  - TLE

| Import Conj                            | unction                |             | _                |                                           |                                       | 2                           |
|----------------------------------------|------------------------|-------------|------------------|-------------------------------------------|---------------------------------------|-----------------------------|
| SDC CSM                                |                        |             |                  |                                           |                                       |                             |
| CSM Search<br>Commo<br>SSC:<br>Only Re | on Name:               | Satellites  | Time<br>Search   | Earliest CSM TCA (L<br>Latest CSM TCA (UT | ITCG):01 Jan 2013<br>CG): 28 Mar 2013 |                             |
| JSPOC<br>ID                            | Primary<br>SSC         | Common Name | Secondary<br>SSC | Common Name                               | TCA (UTCG)                            |                             |
| 101<br>101<br>101<br>101               |                        |             |                  |                                           |                                       | 29<br>36<br>14<br>18        |
| Import Data                            | Sources                |             | V SC<br>Ej       | DC Ephemeris () Mo<br>phemerisType: (Oper | ational 🔍                             | Available                   |
| Import Option                          | ns<br>Conjunction Anal | ysis Co     | mparison Options |                                           | Switch                                | Primary an<br>ary Satellite |

#### Approved for public release



#### **Conjunction Assessment Visualization**

#### Close approaches can be viewed and animated

- Green spheres are 10km radii for relative scaling
- Facilitates understanding for repeated conjunctions





# **SDC Plugin Satellite Database**

- SDC Plugin's "Satellite DB" filters & selects any/all satellite objects users are authorized to access
- Also performs powerful comparisons of operator ephemerides with public or other data

| 🐛 SDA Satellite Database (as seen by: pascal.wauthier@ses.com)                         |              |                    |                |                     |                   |              |               |            |            |
|----------------------------------------------------------------------------------------|--------------|--------------------|----------------|---------------------|-------------------|--------------|---------------|------------|------------|
| Database Search CSM Search                                                             |              |                    | Positional Err | or Between SES Ep   | hemeris and Put   | blic (TLE) D | ata           |            |            |
| SDA Database Search Data Sources                                                       |              |                    |                | (SES Astra 1E Easte | erly Drift Phase) |              |               |            |            |
| Common Name: Astra 1E Search Start (UTCG): 20 Nov 2012                                 | 🕍 Comparison | Options (as seen b | y: pascal.wau  | uthier@ses.com)     | 8                 | ×            |               | -          |            |
| SSC: Search Stop (UTCG): 03 Dec 2012                                                   |              |                    |                |                     |                   |              | Λ             |            | 22         |
| Conjuncts with SSC:                                                                    | Report       |                    |                | Comparisons         |                   |              |               |            |            |
| Only Return My Member Satellites     SDA Ephemeris      Most Recent      All Available | Age of       | f Data             |                | SDA Ephen           | neris vs TLE      |              |               |            | 20         |
| EphemerisType: Operational                                                             | Minim        | um Range           |                | SDA Ephen           | neris vs CSM      |              |               |            | 18         |
|                                                                                        |              | D                  |                |                     |                   |              | Ð             |            |            |
| Common Name SSC Upload Epnemens Epnemens<br>Number Time (UTC) Start (UTC) Stop (UTC)   | V Mean       | Kange              |                | V TLE VS CSI        | M                 |              | _≝     -      |            | 16 70      |
| ASTRA 1E 23686 *TLE Available                                                          | Maxin        | num Range          |                |                     |                   |              |               |            | ang        |
|                                                                                        | Crach        |                    |                |                     |                   |              | THE T         |            | 14 0       |
|                                                                                        | Graph        |                    |                |                     |                   |              | ອ<br>ເ        |            | 12         |
|                                                                                        | Range        | Difference         |                |                     |                   |              | S             | IN N N N I | - <b>-</b> |
|                                                                                        | RIC          |                    |                |                     |                   |              | $\rightarrow$ |            | 10         |
|                                                                                        |              |                    |                |                     |                   | _ N          | Q V           |            |            |
|                                                                                        |              |                    |                | OK                  | Cance             |              |               | -          | 3          |
|                                                                                        |              |                    |                |                     |                   |              | S             |            | 6          |
| STK Object Options                                                                     |              |                    | V              |                     |                   |              |               |            |            |
| Color: Auto Select Color                                                               |              |                    |                |                     |                   |              |               |            |            |
| Create Constellation for Selected Satellites:                                          |              | 22 Thu             |                |                     | 1526              |              | . 📣 🛛 🗩       |            |            |
| Name: Options                                                                          | Nov 2012     |                    |                |                     |                   | 1 car        | At 🖣          | 💷 🔛 🔪      | -          |
|                                                                                        |              |                    |                |                     |                   | 1.000        | A.1944        |            |            |
|                                                                                        | Range (km)   | 🕍 Satellite Compar | son Data       |                     |                   |              |               | x          |            |
|                                                                                        |              |                    | TI E Age       | Enhemeris           | Min Bange         | Mean         | Max Bange     |            |            |
|                                                                                        | Approved     | Name SSC           | (days)         | Age (days)          | (km)              | Range (km)   | (km)          | 3          | 1          |
|                                                                                        | <b></b>      | ASTRA 1E 23686     | 0.87           | 0.23                | 3.383             | 14.190       | 23.599        |            |            |



# **SDC System Messages**

# User can search all SDC system messages affiliated with their account

- Filter based upon system time, job status & message

| ID        | Subject                                     | Creation Date (UTC)      |   |  |  |  |  |  |  |  |
|-----------|---------------------------------------------|--------------------------|---|--|--|--|--|--|--|--|
| 144561    | Conjunction Report                          | 20 Nov 2012 00:31:40.000 |   |  |  |  |  |  |  |  |
| 144551    | Conjunction Report                          | 20 Nov 2012 00:31:39.000 | _ |  |  |  |  |  |  |  |
| 144541    | Conjunction Report                          | 20 Nov 2012 00:31:39.000 | = |  |  |  |  |  |  |  |
| 144531    | Conjunction Report                          | 20 Nov 2012 00:31:39.000 |   |  |  |  |  |  |  |  |
| 144521    | Conjunction Report                          | 20 Nov 2012 00:31:38.000 |   |  |  |  |  |  |  |  |
| 144511    | Conjunction Report                          | 20 Nov 2012 00:31:38.000 |   |  |  |  |  |  |  |  |
| 144501    | Conjunction Report                          | 20 Nov 2012 00:31:36.000 |   |  |  |  |  |  |  |  |
| 144491    | Conjunction Report                          | 20 Nov 2012 00:31:36.000 |   |  |  |  |  |  |  |  |
| 144471    | Conjunction Report                          | 20 Nov 2012 00:31:35.000 |   |  |  |  |  |  |  |  |
| 144461    | Conjunction Report                          | 20 Nov 2012 00:31:34.000 |   |  |  |  |  |  |  |  |
| 144451    | Conjunction Report                          | 20 Nov 2012 00:31:33.000 |   |  |  |  |  |  |  |  |
| 144441    | Conjunction Report                          | 20 Nov 2012 00:31:33.000 |   |  |  |  |  |  |  |  |
| 144431    | Conjunction Report                          | 20 Nov 2012 00:31:26.000 |   |  |  |  |  |  |  |  |
| 144421    | Conjunction Report                          | 20 Nov 2012 00:30:58.000 |   |  |  |  |  |  |  |  |
| 144411    | Conjunction Report                          | 20 Nov 2012 00:30:57.000 |   |  |  |  |  |  |  |  |
| 144401    | Conjunction Report                          | 20 Nov 2012 00:30:34.000 |   |  |  |  |  |  |  |  |
| 144381    | Conjunction Report                          | 20 Nov 2012 00:30:18.000 |   |  |  |  |  |  |  |  |
| 144371    | Conjunction Report                          | 19 Nov 2012 22:37:40.000 |   |  |  |  |  |  |  |  |
| 144361    | Ephemeris Processing Successful             | 19 Nov 2012 22:29:03.000 |   |  |  |  |  |  |  |  |
| 144351    | Conjunction Report                          | 19 Nov 2012 22:08:48.000 |   |  |  |  |  |  |  |  |
| 144341    | Ephemeris Processing Successful             | 19 Nov 2012 22:04:29.000 |   |  |  |  |  |  |  |  |
| 144291    | Conjunction Report                          | 19 Nov 2012 19:27:04.000 | Ŧ |  |  |  |  |  |  |  |
| •         |                                             | 4                        |   |  |  |  |  |  |  |  |
| Filtering | Tuesday, Neurobas 15, 2012, Co. C. T. Marda | Neuropher 10, 2012       |   |  |  |  |  |  |  |  |
| From      | Inursday , November 15, 2012                | , November 19, 2012      |   |  |  |  |  |  |  |  |
| 🔽 Job Sta | ✓ Job Status Completed ▼                    |                          |   |  |  |  |  |  |  |  |
| Messag    | е Туре 📃 👻                                  |                          |   |  |  |  |  |  |  |  |
|           | Apply Eiler                                 |                          |   |  |  |  |  |  |  |  |



# **SDC Plugin: Easy to Build an STK Scenario**





| SES_ASTRA_1E_Eph201211192101.sa |                          |                          |                     | 2              |
|---------------------------------|--------------------------|--------------------------|---------------------|----------------|
|                                 | Dire                     | ct-to-Home services      |                     |                |
| Object Name                     | Time In (UTCG)           | Time Out (UTCG)          | Min Separation (km) | Min Range (km) |
| 12 IS-12 Eph201211182034.sa     | 20 Nov 2012 20:43:47.594 | 20 Nov 2012 23:05:24.200 | 121.805812          | 121.805812     |
| 7 G-27 Eph201211182033.sa       | 20 Nov 2012 20:46:28.598 | 20 Nov 2012 23:04:51.529 | 156.142570          | 156.142570     |
| 7_G-27_Eph201211182033.sa       | 21 Nov 2012 09:13:10.489 | 21 Nov 2012 10:14:00.736 | 453.181541          | 453.181541     |
| 709 IS-709 Eph201211182031.sa   | 22 Nov 2012 08:27:22.271 | 22 Nov 2012 10:54:34.261 | 313.465799          | 313.465799     |
| 709 IS-709 Eph201211182031.sa   | 22 Nov 2012 20:00:54.308 | 22 Nov 2012 22:46:01.409 | 246.116122          | 246.116122     |
| 26 IS-26 Eph201211182039.sa     | 24 Nov 2012 07:22:25.421 | 24 Nov 2012 09:07:28.887 | 309.490618          | 309.490618     |
| 6 G-26 Eph201211182033.sa       | 24 Nov 2012 08:10:25.154 | 24 Nov 2012 10:30:16.068 | 115.940016          | 115.940016     |
| 11192100.sa                     | 24 Nov 2012 08:38:43.272 | 24 Nov 2012 10:06:47.356 | 436.302256          | 436.302256     |
| 26_IS-26_Eph201211182039.sa     | 24 Nov 2012 19:05:59.114 | 24 Nov 2012 21:03:24.445 | 241.542742          | 241.542742     |
| 11192100.sa                     | 24 Nov 2012 19:39:23.924 | 24 Nov 2012 22:34:09.330 | 150.394731          | 150.394731     |
| 6_G-26_Eph201211182033.sa       | 24 Nov 2012 20:55:33.859 | 24 Nov 2012 21:23:10.693 | 490.420534          | 490.420534     |
| 01211192101.sa                  | 27 Nov 2012 08:40:03.286 | 27 Nov 2012 09:20:20.165 | 480.017139          | 480.017139     |
| 01211192101.sa                  | 27 Nov 2012 19:38:02.721 | 27 Nov 2012 21:59:50.903 | 120.187579          | 120.187579     |
| 10_IS-10_Eph201211182039.sa     | 28 Nov 2012 19:24:58.374 | 28 Nov 2012 21:51:11.120 | 140.052346          | 140.052346     |
| 211192101.sa                    | 28 Nov 2012 20:16:22.765 | 28 Nov 2012 21:09:03.060 | 465.454699          | 465.454699     |
| 211192101.sa                    | 29 Nov 2012 07:21:04.520 | 29 Nov 2012 09:40:35.724 | 145.280244          | 145.280244     |
|                                 |                          |                          |                     |                |

01010011010

ASTRA 1E - 19.2° EAST

SPA

PUBLISHED FEBRUARY 2003

Approved for public release



# **RF Parameters Fully Populated...**

 When SDC RF parameters fully populated, extensive proactive/preemptive analyses will be possible.



# **SDC Plugin Summary**



 SDC Plugin provides easy access to user-friendly, tailored analysis of SDA member data

- Augments SDC rich repository of SOAP and REST web services for automated machine-to-machine interface
- Allows SDC users to obtain any/all SDC data they are authorized to access
  - SDC ephemerides and maneuvers populated by operators
  - SDC RF parameters and RFI alerts to be populated as well.
- SDC Plugin released January 2013
  - *Free* to SDA members; requires compatible STK licenses
  - Made available on SDA Shared Code Repository

# SDC Plugin v1.1 targeted for 29 March to comply w/new Space-Track.org CSM format



Dull but Terribly Important

Terribly Dull and Terribly Unimportant

Terribly Interesting and Terribly Important

"Degrees-of-Terrible" Meter

#### **SDA Users Meeting: SDA General Forum**

### HOW YOU CAN BENEFIT: CONJUNCTION ASSESSMENT DAN OLTROGGE


## What Are Key SDC CA Benefits?

- Conjunction assessment (CA) is branch of Space Situational Awareness (SSA) discipline
- Key differentiators of SDC SSA analyses are:
  - 1) Data normalization of operator data
  - 2) Data fusion of authoritative data
  - 3) Ongoing research into CA actionability
  - 4) Ongoing SDC performance & data quality assessment
    - TLE and CSM automated comparisons
    - Ephemeris precision analyses

## We now examine each of these aspects

## **SDC Data Normalization**



- Accepting operator satellite data in their formats & frames is a key SDC attribute
  - Operator doesn't have to procure new software or produce new data format/content

## SDC ingests operator's <u>current</u> data

- Any format or content acceptable
- Centralized implementation of converters facilitates consistent conversion practices and approaches.
- CSSI experienced in nuances and complexities of reference frames and timing systems

## **SDC Data Normalization (cont)**



- Too many potential pitfalls to risk NOT doing due diligence in conversion of external data
  - SDC/operator dialog to convert data properly
  - Many astrodynamics terms "overloaded"
    - Reference frame names, ballistic coeff., element sets
- CSSI works to ensure data worthy of SDC use
- SDA and CSSI also actively developing and promoting international astrodynamics and data exchange standards for space operations



## Why the Focus on Data Fusion?

## Space Situational Awareness (SSA) <u>degraded/invalidated</u> by:

- Don't need a license to become a parent
- Don't need to prove suitability of SSA data or analysis to generate conjunction assessment or RFI mitigation results

|                          |  | - 1 |
|--------------------------|--|-----|
| Radar                    |  |     |
| Optical                  |  |     |
| <b>RF Interferometry</b> |  |     |
| Operator Ranging         |  |     |



SDC circumvents many of these issues by:

- Careful, methodical fusion of "authoritative" operator & tracking data (as available)
- Automated, continuous performance assessment & comparison w/external sources

# Must Consider CA "Actionability"



- Conjunction Assessment (CA) actionability and data quality directly linked
- CSSI's CA research characterizes actionable data quality requirements
- Orbit solutions corrupted by unknown maneuvers

   (i.e. 1 × 10<sup>-300</sup> risk!)

| GEO Case                                                | Maximum<br>Probability        |
|---------------------------------------------------------|-------------------------------|
| Operator data                                           | <sup>1</sup> / <sub>150</sub> |
| Radar/Optical vs<br>Operator                            | <sup>1</sup> / <sub>800</sub> |
| Radar/Optical                                           | $^{1}/_{2000}$                |
| Radar/Optical TLEs vs Operator                          | $^{1}/_{5000}$                |
| Radar/Optical TLEs                                      | $^{1}/_{12000}$               |
| Radar/Optical orbit fit<br>thru maneuver<br>unknowingly | $1 \times 10^{-300}$          |

\*Representative Results from 2011 "Improving Our Vision" SSA Conference Study



## **Impact of Maneuvers on SSA**

## • AMC-3 6-mo In-Family Maneuver Sequence:

AMC-3: Relative Range Between SES Best-Estimate Trajectory and CelesTrak Public TLEs





# **Impact of Optical Lighting on SSA**

- Analysis of 3 randomly-selected satellites reveal distinct TLE night-favoring accuracy trend
  - Night performance ≈3 km; day=35 km
  - Operator data confirmed to be better
  - Optical obs systemic undersampling

### Solution: data fusion w/other sensor types







### **Impact of Radar/Optical Cross-Tags**

- Evaluation of GEO orbits reveals as much as 18% of a satellite's TLEs likely corrupted by cross-tagging and track mis-association
  - Orbit-dependent; median (typically) more like 3%
  - But if in lucky 18<sup>th</sup>-percentile... ≈1 of 5 TLEs bad



## Data Fusion Research at AGI: The Science of External Data Rqmts:



## SDC external data requirements

- Encouraging operator best practices and Int'l Stds
  - Orbit Determination, EOP, Space Wx, ephemeris data exchange
- Ephem step size, digits-of-precision, interp. schemes
- Ephem length and upload frequency

 $Eph_{Dura} = Timespan_{SDC} + P_{Upload} + Delay_{Upload} + 2day_Pad$ 





Interpolation Accuracy vs Ephem Step GEO Orbit, Incl= 5 deg, Time span = 1 Day, Lagrange 5th-Order Interpolation





### **SDA Users Meeting: SDA General Forum**

### HOW YOU CAN BENEFIT: LAUNCH AND EARLY ORBIT PHASE (LEOP) DAN OLTROGGE



## **SDC Now Processes LEOP**

- New capability to store and perform CA for space objects not yet in JSpOC catalog
- SDC defines temporary "Analyst Satellite" during LEOP that transitions to actual SSC
- Steps (in SDC LEOP Ops Procedure):
  - Member requests LEOP via <u>SDC-Support@agi.com</u>
  - SDC Support coordinates SDC Team
  - SDC Operations dialogues with SDA member
    - Obtain sample ephemeris format/file
    - Select existing or prototype new data converter
    - SDC Development assigns or implements converter



## **LEOP Temporary ID Assignments**

### SSC Temporary IDs assigned by number

| SSC Range   | <u>Operator</u>     |
|-------------|---------------------|
| 77810-77819 | AMOS                |
| 77820-77829 | Arabsat             |
| 77790-77799 | Avanti              |
| 77740-77749 | EchoStar            |
| 77870-77879 | Eumetsat            |
| 77720-77729 | Eutelsat            |
| 77800-77809 | GE                  |
| 77750-77759 | GeoEye              |
| 77880-77789 | GISTDA              |
| 77710-77719 | Inmarsat            |
| 77780-77789 | Intelsat            |
| 77860-77869 | NASA                |
| 77830-77839 | NOAA                |
| 77850-77859 | Optus               |
| 77730-77739 | Paradigm            |
| 77700-77709 | SES                 |
| 77770-77779 | Space Systems/Loral |
| 77760-77769 | StarOne             |
| 77840-77849 | Telesat             |



## **LEOP Missions Supported To Date**

| Satellite           | SSC   | Operator              |
|---------------------|-------|-----------------------|
| Amazonas 3 launch   | 77773 | Space Systems/Loral   |
| Astra 2E launch     | 77701 | SES                   |
| Astra 2F Launch     | 77700 | SES                   |
| Echostar 16 launch  | 77740 | Space Systems/Loral   |
| Echostar 17 launch  | 77778 | Space Systems/Loral   |
| Eutelsat 21B Launch | 77720 | Eutelsat              |
| Eutelsat 70B launch | 77721 | Eutelsat              |
| Intelsat 20 Launch  | 77780 | Intelsat              |
| Intelsat 21 Launch  | 77781 | Intelsat              |
| Intelsat 23 Launch  | 77783 | Intelsat              |
| Intelsat 27 Launch  | 77782 | Intelsat              |
| SES-5 launch        | 77777 | Space Systems/Loral   |
| SES-6 launch        | 77702 | SES                   |
| Skynet 5D Launch    | 77703 | Paradigm Services Ltd |
| Star One C3 Launch  | 77760 | StarOne               |
| SatMex 8 Launch     | 77771 | SES                   |
| Anik G1             | 77772 | SES                   |



### **SDA Users Meeting: SDA General Forum**

### AUTOMATED DATA ANALYSIS: TLE COMPARISONS TS KELSO



### Process

Performed as part of up-front validation

## Repeated weekly

- Automatically analyzes differences between ephemerides & TLEs
  - RIC range (2D and 3D)
  - Latitude vs. longitude (GEO only)
  - Longitude & inclination history (GEO only)
  - In-track & cross-track acceleration (GEO) or jerk (LEO)
- Report results via e-mail with web access



### Reports

- Echoes operational & ephemeris status (Table 1)
- Summarizes age of data & differences (Table 2)
- Shows individual results
  - Ensure good match when no issues
    - Maneuvers, cross-tags
  - Assesses impacts of SSN performance
    - Delays to resolve maneuvers
- Report issues to operator and/or JSpOC



## **Ephemeris-TLE Comparisons**

Dr. T.S. Kelso SDC Operations Manager



### Process

Performed as part of up-front validation

## Repeated weekly

- Automatically analyzes differences between ephemerides & TLEs
  - RIC range (2D and 3D)
  - Latitude vs. longitude (GEO only)
  - Longitude & inclination history (GEO only)
  - In-track & cross-track acceleration (GEO) or jerk (LEO)
- Report results via e-mail with web access



### Reports

- Echoes operational & ephemeris status (Table 1)
- Summarizes age of data & differences (Table 2)
- Shows individual results
  - Ensure good match when no issues
    - Maneuvers, cross-tags
  - Assesses impacts of SSN performance
    - Delays to resolve maneuvers
- Report issues to operator and/or JSpOC

### **Satellites to be Validated**



| Official Name                                                                              | NORAD<br>Catalog<br>Number | Ephemeris<br>Upload<br>(UTC) | Ephemeris<br>Start<br>(UTC) | Ephemeris<br>Stop<br>(UTC) | Ops Status |
|--------------------------------------------------------------------------------------------|----------------------------|------------------------------|-----------------------------|----------------------------|------------|
| ECHOSTAR 3                                                                                 | 25004                      | 2013 Mar 08<br>01:30:17      | 2013 Mar 04<br>23:30:27     | 2013 Mar 25<br>23:30:27    | +          |
| ECHOSTAR 7                                                                                 | 27378                      | 2013 Mar 08<br>01:30:18      | 2013 Mar 04<br>21:30:30     | 2013 Mar 25<br>21:30:30    | +          |
| ECHOSTAR 12 (RAINBOW 1)                                                                    | 27852                      | 2013 Mar 08<br>01:30:22      | 2013 Mar 05<br>16:31:16     | 2013 Mar 26<br>16:31:16    | +          |
| ECHOSTAR 10                                                                                | 28935                      | 2013 Mar 08<br>01:30:19      | 2013 Mar 04<br>14:30:33     | 2013 Mar 25<br>14:30:33    | +          |
| ICO G1                                                                                     | 32763                      | 2013 Mar 08<br>01:30:25      | 2013 Mar 02<br>17:41:14     | 2013 Mar 23<br>17:41:14    | +          |
| ECHOSTAR 11                                                                                | 33207                      | 2013 Mar 08<br>01:30:21      | 2013 Mar 05<br>14:30:45     | 2013 Mar 26<br>14:30:45    | +          |
| ECHOSTAR 14                                                                                | 36499                      | 2013 Mar 08<br>01:30:26      | 2013 Mar 07<br>15:19:55     | 2013 Mar 28<br>15:19:55    | +          |
| ECHOSTAR 15                                                                                | 36792                      | 2013 Mar 08<br>01:30:23      | 2013 Mar 05<br>15:30:56     | 2013 Mar 26<br>15:30:56    | +          |
| ECHOSTAR 16                                                                                | 39008                      | 2013 Mar 08<br>01:30:27      | 2013 Mar 06<br>11:29:00     | 2013 Mar 27<br>11:29:00    | +          |
| Number of satellites screened = 9<br>Number of satellites with ephemeris = 9 (all current) |                            |                              |                             |                            |            |

#### Table 1. Satellites to be Validated



### **Summary of Results**

| Name                    | SSC   | TLE Age<br>(days) | Ephemeris<br>Age (days) | Min Range<br>(km) | Mean Range<br>(km) | Max Range<br>(km) |
|-------------------------|-------|-------------------|-------------------------|-------------------|--------------------|-------------------|
| ECHOSTAR 3              | 25004 | 1.88              | 3.15                    | 2.863             | 13.816             | 25.006            |
| ECHOSTAR 7              | 27378 | 1.73              | 3.23                    | 3.717             | 9.846              | 14.339            |
| ECHOSTAR 12 (RAINBOW 1) | 27852 | 1.88              | 2.44                    | 2.609             | 5.634              | 7.918             |
| ECHOSTAR 10             | 28935 | 1.69              | 3.52                    | 1.864             | 6.746              | 9.798             |
| ICO G1                  | 32763 | 0.88              | 5.39                    | 0.012             | 2.369              | 5.236             |
| ECHOSTAR 11             | 33207 | 1.88              | 2.52                    | 5.499             | 9.728              | 12.771            |
| ECHOSTAR 14             | 36499 | 1.56              | 0.49                    | 2.832             | 8.278              | 14.432            |
| ECHOSTAR 15             | 36792 | 1.01              | 2.48                    | 2.311             | 7.400              | 11.157            |
| ECHOSTAR 16             | 39008 | 3.73              | 1.65                    | 22.501            | 28.405             | 34.524            |

#### Table 2. Summary of Results

#### Comma-delimited File of Summary Results

Range statistics: Min = 0.012 km, Mean = 10.247 km, Max = 34.524 km, Standard Deviation = 7.075 km

PASSED with 0 violation(s) of your range threshold(s) (0.00%).



### **Individual Results**

#### ECHOSTAR 11

1 33207U 08035A 13065.24694652 -.00000081 00000-0 10000-3 0 281 2 33207 0.0444 291.4486 0002927 73.7256 137.8394 1.00271871 17014

#### TLE Age = 1.88 days, Ephemeris Age = 2.52



Min range = 5.499 km, Mean range = 9.728 km, Max range = 12.771 km

. .



## **Individual Results**



Figure 6b: ECHOSTAR 11 Ephemeris-TLE Latitude vs. Longitude



## **Individual Results**



Figure 6c: ECHOSTAR 11 7-day Longitude & Inclination Histories



Figure 6d: ECHOSTAR 11 7-day In-Track & Cross-Track Acceleration Histories







## **E-W Stationkeeping**





## **N-S Stationkeeping**





## **Frequent Maneuvers**



## **Cross-Tags**









### **SDA Users Meeting: SDA General Forum**

### AUTOMATED DATA ANALYSIS: CSM COMPARISONS TS KELSO

### Process



# CSSI checks hourly for new Space-Track CSMs

- For each operator we receive CSMs for, we:
  - Generate individual summaries comparing different data sets
    - Ephemeris vs. CSM & TLE data
    - Conjunction results for primary vs. secondary based on:
      - » CSM vs. CSM
      - » Ephemeris vs. CSM
      - » Ephemeris vs. TLE
      - » Ephemeris vs. Ephemeris (if available)
  - Send an e-mail containing all summaries

## Case studies highlight the value of reviewing all data available



### **Sample Cases**

# Single Ephemeris Case

- Primary Comparison
- AGI Viewer File (3D View)

## Dual Ephemeris Case

- Primary/Secondary Comparisons
- Conjunction Comparisons
- AGI Viewer File (3D View)
- Unnecessary Maneuver Case
- Missed Maneuver Requirement

## **Single Ephemeris Case**



### JSpOC Unique ID 201206240401

Creation Date: 2012-03-02 13:27:37 UTC (5.3 hours ago)

Upload Time: 2012-03-02 18:13:45 UTC (0.5 hours ago)

### Conjunction for 12345/SATELLITE A [+] and 23456/SATELLITE B [?]

CSM min range at TCA (2012-03-09 07:47:14.017 UTC) = 8.302 km

### Ephemeris vs. CSM/TLE Comparison

Primary CSM Range at TCA: 22.382 km TLE Range at TCA: 10.800 km

Primary ephemeris epoch: 2012-03-01 00:00:00.000 UTC (1.78 days old)

| CSM Conjunction Comparisons                                   |                                            |  |
|---------------------------------------------------------------|--------------------------------------------|--|
| CSM vs. CSM                                                   | TCA: 2012-03-09 07:47:14.017 UTC, 8.303 km |  |
| Ephemeris vs. CSM TCA: 2012-03-09 07:47:42.716 UTC, 9.541 km  |                                            |  |
| Ephemeris vs. TLE TCA: 2012-03-09 07:47:40.094 UTC, 15.927 km |                                            |  |
| Ephemeris vs. Ephemeris N/A                                   |                                            |  |
| Latest SDC Search Results for 12345 and 23456                 |                                            |  |
| Complete AGI Viewer Scenario                                  |                                            |  |

### **Primary Comparison**











### **Dual Ephemeris Case**



#### JSpOC Unique ID 201206240386

Creation Date: 2012-03-02 13:27:36 UTC (5.3 hours ago) Upload Time: 2012-03-02 18:13:45 UTC (0.5 hours ago)

#### Conjunction for 02468/SATELLITE C [+] and 13579/SATELLITE D [+]

CSM min range at TCA (2012-03-08 04:05:04.691 UTC) = 3.779 km

#### Ephemeris vs. CSM/TLE Comparison

| Primary | CSM Range at TCA: 53.460 km | TLE Range at TCA: 44.953 km |
|---------|-----------------------------|-----------------------------|
|         | 1                           |                             |

Primary ephemeris epoch: 2012-03-02 10:30:00.000 UTC (0.34 days old)

Secondary CSM Range at TCA: 0.800 km TLE Range at TCA: 67.688 km

Secondary ephemeris epoch: 2012-03-02 10:30:00.000 UTC (0.34 days old)

#### **CSM Conjunction Comparisons**

| CSM vs. CSM                                   | TCA: 2012-03-08 04:05:04.693 UTC, 3.779 km   |  |
|-----------------------------------------------|----------------------------------------------|--|
| Ephemeris vs. CSM                             | TCA: 2012-03-08 03:50:03.926 UTC, 55.594 km  |  |
| Ephemeris vs. TLE                             | TCA: 2012-03-08 00:31:43.519 UTC, 122.506 km |  |
| Ephemeris vs. Ephemeris                       | TCA: 2012-03-08 03:42:54.626 UTC, 56.339 km  |  |
| Latest SDC Search Results for 02468 and 13579 |                                              |  |
| Complete AGI Viewer Scenario                  |                                              |  |
#### **Primary Comparison** Ephemeris vs. CSM/TLE Range Comparison JSpOC Unique ID: 201206240386 Creation Date: 2012-03-02 13:27:36.000 UTC SATELLITE C 70 60 50 Distance (km) 40 30 20 10 0 Mar 7 Mar 7 Mar 8 05:00 Mar 8 17:00 23:00 11:00 Date/Time (UTC) TCA: 2012-03-08 04:05:04.000 UTC TLE Range at TCA: 44.953 km CSM Range at TCA: 53.460 km CSM TLE

01010011010

SPACE

DATA



## **Conjunction Comparison**









## **AGI Viewer File**

SDC Analysis Date: 2012-03-02 18:46:00 UTC





## **Unnecessary Maneuver Case**

JSpOC Unique ID 201200635887

Creation Date: 2012-01-06 19:08:31 UTC (4.3 hours ago) Upload Time: 2012-01-06 21:07:39 UTC (2.3 hours ago)

| Conjunction for 11111/SATELLITE E [+] and 22222/SATELLITE F [+]      |       |                                             |                             |
|----------------------------------------------------------------------|-------|---------------------------------------------|-----------------------------|
| CSM min range at TCA (2012-01-09 20:42:59.242 UTC) = 1.600 km        |       |                                             |                             |
| Ephemeris vs. CSM/TLE Comparison                                     |       |                                             |                             |
| Primary                                                              | CSM R | ange at TCA: 1.295 km                       | TLE Range at TCA: 25.003 km |
| Primary ephemeris epoch: 2012-01-05 00:00:00.000 UTC (1.98 days old) |       |                                             |                             |
| Secondary                                                            |       | N/A                                         | N/A                         |
| N/A                                                                  |       |                                             |                             |
| CSM Conjunction Comparisons                                          |       |                                             |                             |
| CSM vs. CSM                                                          |       | TCA: 2012-01-09 20                          | 0:42:59.242 UTC, 1.600 km   |
| Ephemeris vs. CSM                                                    |       | TCA: 2012-01-09 20                          | 0:41:23.432 UTC, 1.061 km   |
| Ephemeris vs. TLE                                                    |       | TCA: 2012-01-09 15:40:23.187 UTC, 57.896 km |                             |
| Ephemeris vs. Ephemeris                                              |       |                                             | N/A                         |
| Latest SDC Search Results for 11111 and 22222                        |       |                                             |                             |
| Complete AGI Viewer Scenario                                         |       |                                             |                             |



## **Unnecessary Maneuver Case**

#### JSpOC Unique ID 201200635887

Creation Date: 2012-01-06 19:08:31 UTC (4.3 hours ago) Upload Time: 2012-01-06 21:07:39 UTC (2.3 hours ago)

| Conjunction for 11111/SATELLITE E [+] and 22222/SATELLITE F [+]        |        |                                             |                             |
|------------------------------------------------------------------------|--------|---------------------------------------------|-----------------------------|
| CSM min range at TCA (2012-01-09 20:42:59.242 UTC) = 1.600 km          |        |                                             |                             |
| Ephemeris vs. CSM/TLE Comparison                                       |        |                                             |                             |
| Primary                                                                | CSM R  | ange at TCA: 1.295 km                       | TLE Range at TCA: 25.003 km |
| Primary ephemeris epoch: 2012-01-05 00:00:00.000 UTC (1.98 days old)   |        |                                             |                             |
| Secondary                                                              | CSM Ra | inge at TCA: 70.722 km                      | TLE Range at TCA: 7.771 km  |
| Secondary ephemeris epoch: 2012-01-03 19:15:44.000 UTC (3.18 days old) |        |                                             |                             |
| CSM Conjunction Comparisons                                            |        |                                             |                             |
| CSM vs. CSM                                                            |        | TCA: 2012-01-09 2                           | 0:42:59.242 UTC, 1.600 km   |
| Ephemeris vs. CSM                                                      |        | TCA: 2012-01-09 2                           | 0:41:23.432 UTC, 1.061 km   |
| Ephemeris vs. TLE                                                      |        | TCA: 2012-01-09 15:40:23.187 UTC, 57.896 km |                             |
| Ephemeris vs. Ephemeris                                                |        | TCA: 2012-01-09 15:58:46.889 UTC, 65.415 km |                             |
| Latest SDC Search Results for 11111 and 22222                          |        |                                             |                             |
| Complete AGI Viewer Scenario                                           |        |                                             |                             |

## **Missed Maneuver Requirement**



#### JSpOC Unique ID 201203438032

Creation Date: 2012-02-03 08:24:19 UTC (5.4 hours ago) Upload Time: 2012-02-03 13:31:49 UTC (0.2 hours ago)

Conjunction for 33333/SATELLITE G [+] and 44444/SATELLITE H [+]

CSM min range at TCA (2012-02-08 11:02:18.612 UTC) = 8.415 km

#### Ephemeris vs. CSM/TLE Comparison

CSM Range at TCA: 46.511 km | TLE Range at TCA: 27.146 km Primary

N/A

Primary ephemeris epoch: 2012-02-01 00:00:00.000 UTC (2.57 days old)

| Seconda  | arv |
|----------|-----|
| 00001100 | • • |

| <br> | - |
|------|---|
| N    | 1 |

N/A

N/A

| <b>CSM Con</b> | junction | Comparisons |
|----------------|----------|-------------|
|----------------|----------|-------------|

| CSM vs. CSM                                   | TCA: 2012-02-08 11:02:18.600 UTC, 8.416 km  |  |
|-----------------------------------------------|---------------------------------------------|--|
| Ephemeris vs. CSM                             | TCA: 2012-02-08 17:16:11.014 UTC, 27.044 km |  |
| Ephemeris vs. TLE                             | TCA: 2012-02-08 11:35:19.577 UTC, 49.272 km |  |
| Ephemeris vs. Ephemeris                       | N/A                                         |  |
| Latest SDC Search Results for 33333 and 44444 |                                             |  |
| Complete AGI Viewer Scenario                  |                                             |  |

## **Missed Maneuver Requirement**



#### JSpOC Unique ID 201203438032

Creation Date: 2012-02-03 08:24:19 UTC (5.4 hours ago) Upload Time: 2012-02-03 13:31:49 UTC (0.2 hours ago)

#### Conjunction for 33333/SATELLITE G [+] and 44444/SATELLITE H [+]

CSM min range at TCA (2012-02-08 11:02:18.612 UTC) = 8.415 km

#### Ephemeris vs. CSM/TLE Comparison

Primary CSM Range at TCA: 46.511 km TLE Range at TCA: 27.146 km

Primary ephemeris epoch: 2012-02-01 00:00:00.000 UTC (2.57 days old)

Secondary CSM Range at TCA: 36.666 km TLE Range at TCA: 45.759 km

Secondary ephemeris epoch: 2012-02-01 00:00:00.000 UTC (2.57 days old)

#### **CSM Conjunction Comparisons**

| CSM vs. CSM                                   | TCA: 2012-02-08 11:02:18.600 UTC, 8.416 km  |
|-----------------------------------------------|---------------------------------------------|
| Ephemeris vs. CSM                             | TCA: 2012-02-08 17:16:11.014 UTC, 27.044 km |
| Ephemeris vs. TLE                             | TCA: 2012-02-08 11:35:19.577 UTC, 49.272 km |
| Ephemeris vs. Ephemeris                       | TCA: 2012-02-08 15:47:23.111 UTC, 4.676 km  |
| Latest SDC Search Results for 33333 and 44444 |                                             |
| Complete AGI Viewer Scenario                  |                                             |



### **SDA Users Meeting: SDA General Forum**

## CASES OF INTEREST: DA14 ASTEROID T.S. KELSO

## 2012 DA14 Asteroid



- Predicted close approach on 2013 Feb 15
  - Altitude at TCA (19:25 UTC): 27,680 km
- Concern about passage through satellite regime
  - Used ephemeris from Minor Planet Center
    - Loaded heliocentric data into STK
  - Used STK's Advanced Conjunction Analysis Tool
    - Screened to 1,000 km: No conjunctions with public catalog
      - Just over 15,000 objects
  - Reviewed all SDA satellites + GPS & GLONASS
    - Closest satellite: RBSP B @ 5,630 km
    - Closest GEO: NSS-6 @ 7,970 km





### **SDA Users Meeting: SDA General Forum**

## CASES OF INTEREST: BLITS EVENT T.S. KELSO



## Ball Lens In The Space (BLITS)

### - Russian laser retroreflector operated by IPIE





**Ready for testing** 

dissembled







 Unable to laser range after 2013 Jan 22 @ 01:45:16 UTC

- Analysts collected optical and photometric observations
  - Determined 120-m decrease in semi-major axis
  - Determined spin period change from 5.6 sec to 2.1 sec
  - Unable to determine new spin axis
  - Determined change in state occurred 2013 Jan 22 @ 07:57 UTC
  - Sought information on possible collision



## Review of SOCRATES archives

- Close approach with SCC 30670 (FY1C debris)
  - 3.109 km on 2013 Jan 22 @ 07:56:51 UTC (within 10 sec)
- Nothing predicted within 5 km between
  - 3.485 km on 2013 Jan 21 @ 02:12:14 UTC with SCC 31090
  - 4.510 km on 2013 Jan 22 @ 1:37:34 UTC with SCC 33772
- Proximity to predicted event time made collision likely
- Without external input, BLITS could not maneuver or change attitude



# Alternative hypotheses under examination

- Collision with SCC 30670 (or another object)
- Satellite breakup due to thermal stresses

## Evidence to date

- No change in 30670 orbit seems to discount it, despite proximity at proposed event time
- Increased spin rate seems to refute breakup
- BLITS debris seems too small (~3 cm) for breakup
- Change in orbit could be caused by very small debris
  - Elastic collision sets lower bound of 0.075 g for 30670





#### **SDA Users Meeting: General Forum**

## **RFI FUNCTIONS FOR SDC STEVE SMITH and MARK RAWLINS**

## **SDC/RFI – Introduction**



# SDC Function Development

- Interactive Functions
  - Collision Analysis Operational
  - RF Data for Interference localisation In definition phase
- Reference Functions
  - Contacts Database Operational
  - RF Interference Alerts In definition phase
  - RF Interference case study database In definition phase
  - Carrier ID reference database Under Evaluation

## **SDC/RFI – Introduction**



- Why share data or automate RFI functions?
  - RF interference is the major operational problem affecting customer services on geostationary satellites
  - ~85-90% of customer issues are due to RFI
  - RFI only affects a small amount of capacity (1-2%?) but has a cost and service impact if not resolved
  - Investigation often needs data on other satellites
  - Investigating RFI is time consuming we are always seeking methods and processes to improve response



# **SDC/RFI – Current RFI Ops Issues**

- Overview of the current RFI process
  - Operators need contact details for other operators
    - No existing industry-wide database with reliable contact info
  - Operators need help and information
    - RFI Alert function, to seek assistance exists today with sIRG email distribution – but need enhanced functions
    - To get information on other operator's payload, have to know who to contact
  - In-house knowledge, not documented
    - Tremendous experience, but not captured, not shared internally, let alone with other operators
  - Cooperation with other satellite operators
    - Geolocalisation using other operator satellites information exchanged "manually".

## **SDC/RFI – Geolocation Support**



### What is this?

- Geolocation of interfering signals requires precise satellite ephemeris data, for 'affected' and adjacent satellites
- Geolocation needs RF payload data for 'affected' and potential adjacent satellites

## Why the SDC?

- It already contains the precise ephemeris data
- It already has a means of securely holding and exchanging data with the users
- It already has a legal framework to protect users own data
- The satellite payload information needs adding to complement the information already there

# **SDC/RFI – Geolocation Support**



### RF Data and Geolocation

- Members provide current RF payload (transponder) frequencies, polarizations, connectivity, satellite antenna patterns, reference carriers (data needs to be updated regularly to ensure accuracy)
- SDC will use payload data to find best 'pairing' of primary and adjacent satellites to match geolocation requests from members
- SDC will provide a 'dataset' of the required parameters to feed into the member's geolocation system
- Benefit: SDC computes optimum pairing of satellites for selection by the member; provides data formatted for the geolocation system; data immediately available for geolocation

## Drifting satellites and LEOP (Fly-by)

- CA predicts fly-bys; TT&C frequencies predict RFI
- Benefit: Analysis and Automatic alerts for potential fly-by RFI

# **SDC/RFI – Geolocation Support**



## What are Operational benefits?

- Centralisation of data in SDC makes it available 24/7 to users
- Reduces the time to solution
- Automation of the process reduces mistakes
- Data is currently shared, but only in an informal unprotected manner, on a best effort basis, normally during office hours. SDC has a better, more secure/format data sharing paradigm.



# **SDC/RFI – Reference Functions**

### Contacts (Phonebook)

- SDC has a phonebook database. Members can enter their own contacts (e.g. 24x7 center, technical managers, support staff, etc.)
- Benefit: Member-maintained, single reliable contacts database
- RFI Alert (seeking information and assistance)
  - Structured Alert message can be issued to selectable distribution
  - Data and messages can be saved and searched
  - Feedback provided to the distribution when event is solved
  - **Benefit:** Focused distribution; message tracking; feedback
- RFI Database (historical information, case studies)
  - Stores RFI Alerts, case studies, white papers, etc.
  - Assign tags, keywords, to aid searching
  - Benefit: Members can search RFI events, find useful information

## **SDC/RFI – Other Features**



### Access to RF Payload Data

- Fine grain user control features will allow a member to control access to their data for geolocation scenario analysis on a satellite/user basis
- Authorized members will be able to use SDC to perform geolocation scenario analysis using other operators' payload data
- Benefit: Immediate access to data for investigating RFI issues

### Third party services

- Third party service providers could be SDA associate members
- Members easily contact providers via SDC to request services
- Members can deliver data for geolocation directly to providers
- Benefit: Quick and simple to request and initiate third party geolocation or monitoring services

## **SDC/RFI – Data From Members**



RF Payload Data:

Data describing transponders and connectivity (<u>not</u> customer carrier data): Frequencies, polarizations, connectivity, beam antenna pattern data, reference carrier freq/pol/location/bw

- Drift and LEOP:
- Contacts:
- RFI Alert:
- RFI Database:
- Carrier ID:

TT&C data for satellites: Beacon, command and telemetry frequencies, cmd eirp

For RF Payload teams: Name, email, phone, role (24x7, mgmt, ops center, etc.)

Information describing an event, or information you need: Affected s/c, transponder, connectivity, freq, RFI characteristics, attach plots as needed, comments

Similar data as for 'RFI Alert", for historical reference: Info describing an event, investigation performed, resolution, techniques, test equip, poor vendor equip list

CID code, name of associated operator, optional data identifying the uplinker – name/location/contact info



#### **SDA Users Meeting: SDA Members-Only Discussion**

## CARRIER ID STEVE SMITH and MARK RAWLINS

## **SDC/RFI – Carrier ID**



- New industry development in 2013 Carrier ID (CID) spec issued for DVB. Equipment now being designed
- Users will start transmitting CID and satellite operators can decode it to identify any interfering DVB carrier
- If the carrier is not one of the decoding-operator's carriers, a database is needed to search for the carrier and find the associated operator
- SDA will host a global database to contain CID codes and their associated satellite operator. Accessible by all satellite operators (not only SDA Members). The relevant operator can then be contacted to investigate the cause of the RFI
- Additional data can optionally be entered name, contact, location, etc.



### **SDA Users Meeting: SDA General Forum**

## SDA FUTURE PLANS RON BUSCH



## Space Data Association Objectives for 2013

## SDA

- Grow Membership
- Develop Government and Industry Relationships
- Develop Space Insurance Relationships
- Secure Access to Additional Data Sources

# SDC

- Reduce Operating Costs and Improve Service
- Implement Data Sharing for RFI Mitigation
- Carrier ID Database

# **SDA Future Consideration**



#### Space Weather

- Improved data distribution & alerts
- Controlled sharing of proprietary data
- Improved modelling with feedback
- Carrier ID Database
  - Supports RFI initiative of other industry bodies (sIRG, EUI)

#### Space insurance

 Secure preferred terms for SDA members based on better management of risk

## **SDA Future Challenges**



#### Data Sources

- SDA/SDC built on user data, including 'future knowledge'
- Full catalogue requires additional data:
  - Increase participation >>> 100% of satellite operators
  - Access other data sources to fill gaps and verify existing
- Increasing tracking capabilities/data is key

#### Funding

- SDA is funded solely by participants
- Funding levels limit future developments
- External funding could affect independence
- Fee-paying 'added value' service models considered



## **Summary Comments**

- SDA has shown that a user owned/managed operational solution is viable and can encourage membership precisely because of its independence.
- The legal framework protection of proprietary data has been critical in encouraging participation.
- SDA has already solved Conjunction Assessment and general processes – the wheel doesn't need to be reinvented – public money is better spent on additional tracking/data sources.
- Physical space and the RF spectrum need better <u>operational</u> management – the SDA is the best means of achieving this.



#### **SDA Users Meeting: SDA General Forum**

# GENERAL Q & A BUSCH

# **Contacts – For Presentation Follow Up**



SDA Executive Directors Mr. Ron Busch

Chairman and Director of the SDA VP Network Engineering Intelsat Ron.Busch@space-data.org

Mr. Stewart Sanders Director of the SDA Senior Vice President SES Engineering Stewart.Sanders@space-data.org

Mr. John Mackey Director of the SDA VP Operations Inmarsat John.Mackey@space-data.org

Mr. Mark Rawlins Director of the SDA Head of Payload Engineering & Operations Eutelsat mrawlins@space-data.org

#### SDC POCs

Mr. Paul Welsh SDC Oversight pwelsh@agi.com 610-981-8004

Mr. Dan Oltrogge SDC Program Manager oltrogge@agi.com 610-981-8616

Dr. T.S. Kelso SDC Operations Manager tskelso@agi.com 610-981-8615